Bulan

Tumatan Wikipidia basa Banjar, insiklupidia bibas
Loncat ke navigasi Loncat ke pencarian
Bulan  Simbol Bulan
Full moon in the darkness of the night sky. It is patterned with a mix of light-tone regions and darker, irregular blotches, and scattered with varying sizes of impact craters, circles surrounded by out-thrown rays of bright ejecta.
Bulan purnama terlihat dari belahan utara Bumi
Penamaan
Nama alternatifWulan, Candra, Lunar
Ciri-ciri orbit
Perigee 363.295 km
(0,0024 AU)
Apogee405.503 km
(0,0027 AU)
Sumbu semi-mayor 384.399 km
(0,00257 AU)[1]
Eksentrisitas 0,0549[1]
Periode orbit 27,321582 h (27 d 7 h 43,1 min[1])
Periode sinodis 29,530589 h (29 d 12 h 44 min 2,9 s)
Kecepatan orbit rata-rata 1,022 km/s
Inklinasi 5,145° ke ekliptika[2] (antara 18,29° dan 28,58° ke khatulistiwa Bumi)[1]
Bujur node menaik Mundur satu revolusi dalam 18,6 tahun
Argumen perigee Maju satu revolusi dalam 8,85 tahun
Satelit bagi Bumi
Ciri-ciri fisik
Jari-jari rata-rata 1.737,10 km (0,273 Bumi)[1][3]
Jari-jari khatulistiwa 1.738,14 km (0,273 Bumi)[3]
Jari-jari kutub 1.735,97 km (0,273 Bumi)[3]
Kepepatan 0,00125
Keliling khatulistiwa 10.921 km (khatulistiwa)
Luas permukaan 3,793×107 km2 (0,074 Bumi)
Volume 2,1958×1010 km3 (0,020 Bumi)
Massa 7,3477×1022 kg (0,012300 Bumi[1])
Massa jenis rata-rata 3,3464 g/cm3[1]
Gravitasi permukaan di khatulistiwa1,622 m/s2 (0,1654 g)
Kecepatan lepas2,38 km/s
Hari sideris 27,321582 h (sinkron)
Kecepatan rotasi 4,627 m/s
Kemiringan sumbu 1,5424° (ke ekliptika)
6,687° (ke bidang orbit)[2]
Albedo0,136[4]
Suhu permukaan
   Khatulistiwa
   85°N[5]
minrata-ratamaks
-173º C-53º C116º C
-203 °C-143º C-43º C
Magnitudo tampak −2,5 sampai −12,9[lower-alpha 1]
−12,74 (rata-rata bulan purnama)[3]
Diameter sudut 29,3 sampai 34,1 menit busur[3][lower-alpha 2]
Atmosfer[6]
Tekanan permukaan 10−7 Pa (siang)
10−10 Pa (malam)[lower-alpha 3]
Komposisi Ar, He, Na, K, H, Rn
Bulan bawarna habang wan jingga, tajanak matan Bumi pas garaha, wayah Bumi baandak di antara Bulan wan Matahari

Bulan adalah satelit alami Bumi sabubutingannya[lower-alpha 4][7] wan adalah satilit pangganalnya kalima dalam Tata Surya. Bulan jua adalah satelit alami pangganalnya di Tata Surya maumpat ukuran planet nang di urbitnya,[lower-alpha 5] lawan diamitir 27%, kakajalan 60%, wan massa181 (1.23%) matan Bumi. Di antara satilit alami lainnya, Bulan adalah satilit pangajalnya kadua imbah Io, satilit Yupiter.

Bulan baandak di rotasi sinkron lawan Bumi, nang rancak maampaiakan higa nang sama di Bumi, lawan higa parak ditandai ulih mare pulkanik kadap nang tadapat di antara dataran tinggi karak nang tarang wan kawah tubrukan nang manungkung. Bulan adalah banda langit nang panarangnya imbah Matahari. Saupama Bulan kaya liwar putih wan tarang, pamukaan Bulan sabujurnya kadap, lawan tingkat katarangan nang sadikit labih tinggi matan aspal incir. Matan jaman kunu, andaknya nang manungkung di langit wan pasanya nang taatur sudah mampangaruhi banyak budaya, tamasuk basa, pananggalan, sani, wan mitulugi. Pangaruh grapitasi Bulan maulah tajadinya pasang surut di lautan wan pamanjangan waktu wayah hari di Bumi. Intang orbit Bulan matan Bumi wayah ngini adalah kikira talu puluh kali matan diamitir Bumi, nang maulah ukuran Bulan nang cungul di langit parak sama ganal lawan ukuran Matahari, jadi mamungkinakan Bulan gasan manukupi Matahari wan maulah tajadinya garaha matahari hibak. Intang linear Bulan matan Bumi wayah ngini banaik lawan laju 3.82±0.07 cm satahun, saupama laju ngini kada kunstan.[8]

Bulan dikikiraakan tabantuk kikira 4,5 miliar tahun nang lalu, kada lawas imbah pabantukan Bumi. Saupama tadapat sajumlah hipotesis manganai asal-muasal Bulan, hiputisis nang paling ditarima wayah ngini manjalasakan bahua Bulan tabantuk matan rarapaian nang takulayak imbah sabuah banda langit saukuran Mars baranjahan lawan Bumi.

Bulan adalah sabubutingannya banda langit salain Bumi nang sudah didarati ulih manusia. Parugram Luna Uni Soviet adalah wahana panambaian nang sampai ka Bulan lawan kapal tarabang ruang angkasa nirawak wayah tahun 1959; parugram Apollo NASA Amirika Sarikat adalah misi luar angkasa baawak sabubutingannya nang sudah sampai ka Bulan sampai wayah ngini, dimulai lawan palungsuran misi baawak Apollo 8 nang maurbit Bulan wayah tahun 1968, wan diumpati ulih anam misi pandaratan baawak antara tahun 1969 wan 1972, nang pamulaan adalah Apollo 11. Misi ngini bulik ka Bumi mambawa 380 kg batuan Bulan, nang dipakai gasan mangambangakan pamahaman giulugi manganai asal-muasal, pambantukan satruktur dalam, wan sajarah giulugi Bulan.

Imbah misi Apollo 17 wayah 1972, Bulan wastu disinggahi ulih kapal tarabang ruang angkasa nirawak. Misi-misi ngitu rancaknya adalah misi urbit; matan tahun 2004, Japang, Tiongkok, India, Amirika Sarikat, wan Badan Luar Angkasa Irupa sudah malungsurakan wahana pangurbit Bulan, nang umpat basumbangsih tahadap panamuan is banyu di kawah kutup Bulan. Imbah Apollo, dua nagara jua sudah mangirimakan misi rover ka Bulan, misi Lunokhod Soviet pahabisan pas tahun 1973, wan misi basambungan Chang'e 3 RRC, nang malungsurakan rover Yutu wayah tanggal 14 Disimbir 2013.

Misi baawak ka Bulan wayah masa hadapan sudah dirancanaakan ulih banyak nagara, baik nang didanai ulih pamarintah atawa swasta. Di bawah Pajanjian Luar Angkasa, Bulan tatap bibas dijalajahi ulih sabarataan nagara gasan tujuan damai.

Asal usul ngaran[babak | babak asal mulanya]

Dalam basa Inggris, ngaran gasan satelit alami Bumi adalah moon.[9][10] Kata banda moon babibit matan kata moone (kikira tahun 1380), nang jua bakambang matan kata mone (1135), babibit matan kata basa Inggris Kuno mōna (sabalum 725). Sama halnya lawan sabaratan kata kulaan dalam basa Jermanik lainnya, kata ngini babibit matan basa Proto-Jermanik *mǣnōn.[11]

Sambatan lain gasan Bulan dalam basa Inggris mudirin adalah lunar, asalnya matan basa Latin Luna. Sambatan lainnya nang kada tapi awam adalah selenic, matan bahasa Yunani Kuno Selene (Σελήνη), nang imbahnya jadi dasar pangaranan selenografi.[12]

Pambantukan[babak | babak asal mulanya]

Evolusi Bulan.

Babarapa mikanisme nang diajuakan manganai pambantukan Bulan manyatakan bahwa Bulan tabantuk pada 4,527 ± 0,010 miliar tahun nang bahari,[lower-alpha 6] kikira 30-50 juta tahun imbah pambantukan Tata Surya.[13] Panalitian pahanyarnya nang digawi ulih Rick Carlson manunjukakan bahwa Bulan baumur sakurang-kurangnya 4,4 sampai 4,45 miliar tahun.[14] [15] Hipotesis naya antara lain manjalasakan bahwa fisi Bulan baasal matan karak Bumi akibat gaya sentrifugal,[16][17] panangkapan gravitasi sawalum pambantukan Bulan,[18] wan pambantukan Bumi wan Bulan sacara basamaan di cakram akresi primordial.[17] Hipotesis naya kada manjalasakan tinggi momentum buncu matan sistim Bumi-Bulan.[19]

Hipotesis nang balaku damini manjalasakan bahwa sistim Bumi-Bulan tabantuk akibat rumpukan ganal, wayah banda langit saukuran Mars (bangaran Theia) barumpakan lawan proto-Bumi nang hanyar tabantuk, mamuakakan matarial ka urbit di paraknya nang imbahnya bakumpul gasan mambantuk Bulan.[20] Hipotesis naya mungkin marupakan hipotesis nang paling manjalasakan manganai asal usul Bulan, meskipun panjalasannya kada sampurna.

Rumpakan ganal diparkiraakan umum tajadi pada awal pambantukan Tata Surya. Pemodelan simulasi komputer manganai rumpakan ganal sasuai lawan ukuran momentum buncu sistem Bumi-Bulan wan ukuran inti Bulan nang halus. Simulasi naya jua manunjukakan bahwa sapalih ganal materi pada Bulan baasal matan planet nang marumpak, lain matan proto-Bumi.[21] Akan tetapi, pangujian pahanyarnya manunjukakan bahwa sapalih ganal matari Bulan baasal matan Bumi, lain matan nang marumpak.[22][23][24] Bukti meteorit manunjukakan bahwa materi banda langit nang lain kaya Mars wan Vesta baisi oksigen wan komposisi isotop nang balain banar lawan Bumi, sadangkan Bulan wan Bumi baisi komposisi isotop nang pina mahirip. Pancampuran matari nang manguap imbah rumpakan antara banda langit pambantuk Bulan lawan Bumi diparkiraakan manyamaakan komposisi isotop buhannya,[25] bujur hal naya masih dirucauakan.[26]

Ganalnya energi nang dilapasakan wayah tajadinya rumpakan ganal wan akresi materi di orbit Bumi nang tajadi imbahnya cagar malunuhakan kulimbit hagian luar Bumi, nang imbahnya mambantuk lautan magma.[27][28] Bulan nang hanyar tabantuk baisi jua lautan magma saurang; kikira kadalamannya kisaran 500 km matan radius kasabarataan Bulan.[27]

Bujur akurasi dalam manjalaskan pambantukan Bulan didukung oleh banyak bukti, masih tadapat babarapa kangalihan nang kada sahibaknya kawa dijalasakan oleh hipotesis rumpakan ganal, tautama nang bakaitan lawan komposisi Bulan.[29]

Wayah tahun 2001, tim di Carnegie Institute of Washington malaporakan panalitian nang buhannya gawi tahadap isotop batuan Bulan.[30] Tim naya mahaga bahwa batuan Bulan nang dibawa ka Bumi malalui Program Apollo baisi isotop nang mahirip lawan batuan Bumi, wan balainan lawan batuan pada kabanyakan banda langit nang lainnya di Tata Surya. Marga sapalih ganal materi nang lapas ka orbit wan mambantuk Bulan diduga baasal matan Theia, pahagaan naya sama sakali kada terduga. Pada tahun 2007, bubuhan panaliti matan California Institute of Technology mamadahakan bahwa kasamaan isotop antara Bumi lawan Theia kurang matan 1%.[31] Pada tahun 2012, analisis nang digawi tahadap sampel isotop Bulan manunjukakan bahwa Bulan baisi komposisi isotop nang sama lawan Bumi,[32] batantangan lawan hipotesis nang manjalasakan bahwa Bulan tabantuk jauh matan orbit Bumi atawa matan Theia.

Karakteristik fisik[babak | babak asal mulanya]

Struktur dalam[babak | babak asal mulanya]

Artikal utama: Struktur dalam Bulan
Struktur Bulan
Komposisi kimia parmukaan Bulan (baasal matan batuan kerak)[33]
Sanyawa Rumus Komposisi (wt %)
Mare Dataran tinggi
silika SiO2 45.4% 45.5%
alumina Al2O3 14.9% 24.0%
kapur CaO 11.8% 15.9%
besi(II) oksida FeO 14.1% 5.9%
magnesia MgO 9.2% 7.5%
titanium dioksida TiO2 3.9% 0.6%
sodium oksida Na2O 0.6% 0.6%
Total 99.9% 100.0%

Bulan tarumbung banda langit diferensiasi, nang sacara geokimia baisi komposisi kerak, mantel, wan inti nang balain lawan banda langit nang lain. Bulan sugih lawan wasi padat di hagian inti dalam, lawan radius kikira 240 km, wan fluida di hagian inti luar, tautama nang taulah matan wasi cair, lawan radius kikira 300 km. Di intang hagian inti Bulan tadapat lapisan pawatas babantuk cair lawan radius kikira 500 km.[34] Struktur naya diparkiraakan tarbantuk akibat kristalisasi fraksional pada lautan magma satumat imbah pambantukan Bulan 4,5 miliar tahun nang bahari.[35] Kristalisasi lautan magma naya cagar mambantuk mantel mafik, nang jua disababkan ulih curah hujan wan palunuhan mineral olivin, klinopiroksen, wan ortopiroksen; imbah talung parampat lautan magma takristalisasi, mineral plagioklas bakapadatan randah cagar tabantuk wan maapung ka hagian atas lapisan karak.[36] Cairan pahabisan nang marasani proses kristalisasi cagar tajabak di antara karak wan mantel, lawan inkompabilitas wan unsur panghasil panas nang balimpah.[1] Sasuai lawan proses naya, pemetaan geokimia matan orbit manunjukakan bahwa sapalih ganal karak Bulan basifat anortosit,[6] wan pangujian nang digawi tahadap sampel batuan Bulan nang baasal matan banjir lava di parmukaan jua manjalasakan bahwa komposisi mantel mafik Bulan tasugih lawan wasi amun dibandingakan lawan Bumi.[1] Teknik geofisika manjalasakan bahwa kakandalan rata-rata karak Bulan adalah ~50 km.[1]

Bulan adalah satelit pamadatnya nang kadua di Tata Surya imbah Io.[37] tapi, inti dalam Bulan tatumbung halus, lawan radius kikira 350 km atawa kurang;[1] ukuran naya hanya ~20% matan ukuran Bulan sacara saigian, balain lawan benda langit kebumian nang lain, nang ukuran inti dalamnya parak 50% matan ukuran saigian. Komposisi Bulan balum dikatahui sacara pasti, namun diduga parpaduan matan wasi metalik lawan sajumlah halus sulfur wan nikel; analisis manganai waktu rotasi variabel Bulan manunjukakan bahwa sapalih inti Bulan babantuk cair.[38]

Geologi permukaan[babak | babak asal mulanya]

Artikal utama: Geologi Bulan dan Batuan Bulan
See also: Topografi Bulan
This full disk is nearly featureless, a uniform grey surface with almost no dark mare. There are many bright overlapping dots of impact craters.
Sisi jauh Bulan, lawan mare kadap nang parak kadada.[39]
Topografi Bulan

Topografi Bulan sudah diukur lawan mamakai metode altimetri laser wan analisis gambar stereo.[40] Bantuk topografi nang panjalasanya talihat adalah basin Kutub Selatan Aitken di sisi jauh, lawan diameter kikira 2.240 km, nang marupakan kawah pangganalnya di Bulan lawan kawah pangganalnya nang suah dihaga di Tata Surya.[41][42] Titik parandahnya pada parmukaan Bulan bagana pada kadalaman 13 km.[41][43] Sedangkan titik tertinggi terdapat di bagian timur laut, nang diduga mengalami penebalan akibat pembentukan basin Kutub Selatan Aitken.[44] Basin raksasa lain, nang kaya Imbrium, Serenitatis, Crisium, Smythii, wan Orientale, baisi libar wan katinggian nang tarandah.[41] Katinggian rata-rata sisi jauh Bulan kikira 1,9 km tatinggi amun dibandingakan lawan sisi parak.[1]

Fitur vulkanis[babak | babak asal mulanya]

Artikal utama: Mare

Dataran Bulan nang bawarna gelap wan kawa diitihi lawan mata talanjang disambat lawan maria (bahasa Latin gasan "laut"; atawa mare dalam bantuk tunggal), marga wayah bahari bubuhan astronom mangira bahwa dataran naya dihibaki ulih banyu.[45] Dataran naya barupa kulam ganal nang tabantuk matan lava basal. Bujur serupa lawan basal kebumian, basal mare baisi kandungan wasi nang tatinggi wan kandungan mineral nang kurang.[46][47] sahagian ganal lava naya malatus atawa mangalir malalui proses nang basamaan lawan pambantukan kawah rumpakan. Babarapa bantuk geologi parmukaan Bulan kaya gunung berapi perisai wan kubah vulkanis kawa dihaga di maria di sisi parak Bulan.[48]

Maria kawa dihaga hampir di sabigian sisi parak Bulan, mancakup 31% matan total parmukaan di sisi parak,[49] jauh tatinggi amun dibandingakan lawan maria pada sisi jauh, nang persentasenya hanya 2%.[50] Hal naya diparkirakan tajadi marga tingginya konsentrasi unsur panghasil panas di bawah karak di sisi parak, sawagaimana nang talihat pada peta geokimia nang diperoleh matan spektrometer sinar gamma Lunar Prospector, nang manyababakan mantel mangalami pamanasan, lunuh, imbahnya naik ka parmukaan wan malatus.[36][51][52] Sahagian ganal basal mare Bulan malatus pada periode Imbrian, kikira 3,0–3,5 miliar tahun nang bahari, meskipun hasil pananggalan radiometri manjalasakan waktunya lebih tua 4,2 miliar tahun nang lalu,[53] wan letusan pahabisan, badasarkan pananggalan hitungan kawah, tajadi kikira 1,2 miliar tahun nang bahari.[54]

Wilayah nang bawarna tatarang pada Bulan disambat lawan terrae, atawa dataran tinggi sacara umum, marga wilayah naya tatinggi matan kabanyakan maria. Badasarkan penanggalan radiometri, dataran tinggi Bulan tabantuk kikira 4,4 miliar tahun nang bahari, wan diduga merupakan kumulasi plagioklas matan lautan magma Bulan.[53][54] Balain lawan Bumi, kadada gunung di Bulan nang diyakini tabentuk akibat kajadian tektonik.[55][56][57]

Kawah rumpakan[babak | babak asal mulanya]

A grey, many-ridged surface from high above. The largest feature is a circular ringed structure with high walled sides and a lower central peak: the entire surface out to the horizon is filled with similar structures that are smaller and overlapping.
Kawah Daedalus di sisi jauh Bulan

Proses geologi lain nang mamangaruhi bantuk parmukaan Bulan adalah kawah rumpakan,[58] yaitu katika kawah-kawah tarbantuk akibat tubrukan antara asteroid wan komet lawan parmukaan Bulan. Diparkiraakan tadapat kikira 300.000 kawah lawan luas labih matan 1 km di sisi parak Bulan.[59] Babarapa kawah naya dingarani manurut nama para pakar, ilmuwan, saniman, wan panjalajah.[60] Skala waktu geologi Bulan didasarakan pada kajadian rumpakan nang paling harat, tamasuk Nectaris, Imbrium, wan Orientale, lawan struktur nang dicirikan ulih lingkaran nang tabantuk matan materi nang manguap, rajin badiameter ratusan hingga ribuan kilometer.[61] Kurangnya aktivitas atmosfer, cuaca, wan proses geologi pahanyarnya mambuktiakan bahwa kawah-kawah naya masih dalam kondisi baik. Maskipun hanya sadikit kawah nang dikatahui asal usul pambantukannya, kawah-kawah naya tatap baguna gasan manantuakan usia relatif Bulan. Marga kawah tubrukan manumpuk pada tingkat nang hampir konstan, mahitung jumlah kawah per satuan luas kawa dipakai gasan mamparkiraakan usia parmukaan Bulan.[61] Usia radiometrik batuan kawah nang dibawa ulih misi Apollo bakisar matan 3,8 sampai 4,1 miliar tahun; naya dipakai gasan manjalasakan waktu tajadinya rumpakan Pengeboman Berat Akhir.[62]

Dataran nang manyalimuti hagian atas karak Bulan adalah parmukaan nang bubujuran takominusi (tapacah jadi partikal nang tahalus) wan lapisan parmukaan kebun kawah bangaran regolith, nang tabentuk akibat proses rumpakan. Regolith nang pahalusnya, yakni tanah Bulan matan kaca silikon dioksida, baisi tekstur kaya salju wan babau kaya mesiu.[63] Regolith di parmukaan nang tatuha umumnya takandal daripada parmukaan nang taanum; kakandalannya bamacam-macam, matan 10–20 m di dataran tinggi wan 3–5 m di maria.[64] Di bawah lapisan regolith tadapat megaregolith, lapisan batuan fraktur lawan kakandalan berkilo-kilometer.[65]

Ketersediaan banyu[babak | babak asal mulanya]

Artikal utama: Banyu Bulan
Twenty degrees of latitude of the Moon's disk, completely covered in the overlapping circles of craters. The illumination angles are from all directions, keeping almost all the crater floors in sunlight, but a set of merged crater floors right at the south pole are completely shadowed.
Foto mozaik kutub selatan Bulan nang diambil oleh Clementine: perhatikan bagian gelap permanen di kutub.

Banyu cair kada kawa batahan di parmukaan Bulan. Wayah takana radiasi Matahari, banyu ancap cagar taurai malalui proses nang dipinandui lawan fotodisosiasi wan lanyap ka luar angkasa. Namun, matan tahun 1960-an, bubuhan ilmuwan mamparkiraakan bahwa banyu es nang diangkut oleh komet wayah tajadinya rumpakan atawa nang dihasilakan ulih reaksi batuan Bulan nang kaya oksigen, wan hidrogen matan angin surya, maninggalakan jejak banyu nang mungkin kawa batahan di kawah kutub salatan Bulan nang dingin wan kadap secara parmanen.[66][67] Simulasi komputer manunjukakan bahwa hampir 14.000 km2 parmukaan Bulan bagana pada hagian kutub nang kadap parmanen.[68] Katarsadiaan banyu di Bulan dalam jumlah nang mayu adalah faktor panting dalam marancanaakan proses kolonisasi Bulan marga cagar maimit biaya; rancana altenatif gasan maangkut banyu matan Bumi cagar mahabisakan biaya nang ganal banar.[69]

Batahun-tahun nang bahari, jajak banyu sudah dihaga di parmukaan Bulan.[70] Pada tahun 1994, eksperimen radar bistatik di wahana Clementine manunjukkaan adanya kantong banyu baku di kitaran parmukaan Bulan. Namun, pengamatan radar imbahnya ulih Arecibo manunjukakan bahwa pahagaan nitu mungkin adalah batuan nang talontar matan kawah rumpakan anum.[71] Pada 1998, spektrometer neutron di wahana Lunar Prospector mahaga adanya konsentrasi hidrogen nang tinggi di lapisan regolith lawan kedalaman satu meter di wilayah kutub.[72] Pada 2008, analisis nang digawi tahadap batuan lava vulkanis nang dibawa ka Bumi oleh Apollo 15 manunjukkan adanya kandungan banyu dalam jumlah halus pada interior batuan.[73]

Pada tahun 2008, wahana Chandrayaan-1 mambujurakan adanya banyu es di parmukaan Bulan lawan mamakai Moon Mineralogy Mapper. Spektrometer maitihi adanya garis parasapan hidroksil di bawah sinar Matahari, nang mambuktiakan bahwa parmukaan Bulan baisi banyu es dalam jumlah ganal. Wahana nitu manunjukakan bahwa konsentrasi banyu es mungkin sampai 1.000 ppm.[74] Pada tahun 2009, LCROSS mangirim 2.300 kg impaktor ka kawah kutub nang kadap parmanen, wan mandeteksi sadikitnya tadapat 100 kg banyu dalam material ejektor.[75][76] Analisis data LCROSS lainnya manunjukakan bahwa jumlah banyu nang tadeteksi sampai 155 kg.[77] Pada bulan Mei 2011, Erik Hauri malaporakan[78] adanya 615-1410 ppm inklusi lunuh banyu pada sampel Bulan 74220, "tanah kaca jingga" lawan kandungan titanium tinggi nang baasal matan kajadian vulkanis nang dikumpulakan dalam misi Apollo 17 pada tahun 1972. Inklusi naya tabantuk saat tajadinya laduman ganal di Bulan kikira 3,7 miliar tahun nang bahari. Konsentrasi naya satara lawan magma di mantel atas Bumi.

Medan gravitasi[babak | babak asal mulanya]

Artikal utama: Gravitasi Bulan

Medan gravitasi Bulan sudah diukur lawan mamakai palacakan pergeseran Doppler pada sinyal radio nang dipancarakan ulih pasawat ruang angkasa nang ma-orbit Bulan. Bantuk gravitasi Bulan nang utama adalah konmas, anomali gravitasi positif nang takait lawan babarapa basin rumpakan ganal, sahagian disababakan ulih aliran lava basaltik mare padat nang mahibaki basin nitu.[79][80] Anomali naya babujuran mamangaruhi orbit pasawat luar angkasa di kitaran Bulan. Tadapat babarapa parucauan manganai gravitasi Bulan: lava nang maalir saurangan kada kawa manjalasakan bantuk gravitasi Bulan, wan babarapa konmas nang ada sama sakali kada takait lawan vulkanisme mare.[81]

Medan magnet[babak | babak asal mulanya]

Artikal utama: Medan magnet Bulan

Bulan baisi medan magnet luar kitaran 1–100 nanotesla, kurang matan saparsaratus medan magnet Bumi. Bulan kada baisi medan magnet dipolar global, tagal dihasilakan ulih geodinamo inti logam cair, wan baisi magnetisasi kerak wara, nang mungkin sudah ada pada awal sajarah Bulan wayah geodinamo masih bauparasi.[82][83] Salain nitu, babarapa sisa magnetisasi baasal matan medan magnet samantara nang dihasilakan wayah tajadinya kajadian rumpakan harat, lawan malalui parluasan plasma nang dihasilakan uleh rumpakan. Hipotesis naya didukung oleh magnetisasi kerak nang baandak di parak antipode basin rumpakan ganal.[84]

Atmosfer[babak | babak asal mulanya]

Wayah matahari naik Wan tinggalam, banyak awak Apollo nang malihat cahaya tarang di parmukaan Bulan.[85]
Artikal utama: Atmosfer Bulan

Bulan baisi atmosfer nang babujuran ranggang, malahan parak hampa, lawan massa total kurang matan 10 ton metrik.[86] Takanan parmukaannya adalah kitaran 3Citakan:Esp atm (0,3 nPa); ukurannya bamacam manurut hari Bulan. Sumbar atmosfer Bulan meliputi pelepasan gas wan palapasan atom akibat bombardemen tanah Bulan oleh ion angin surya.[6][87] Unsur-unsur nang takandung pada atmosfer Bulan adalah sodium wan potasium, nang dihasilakan oleh palapasan atom; unsur naya jua dihaga pada atmosfer Merkurius wan Io. Unsur nang lain tamasuk helium-4 nang dihasilakan matan angin surya; lawan argon-40, radon-222, wan polonium-210, nang dilapasakan ka angkasa imbah dihasilakan malalui proses palunuhan radioaktif di dalam karak wan mantel.[88][89] Kada adanya kabaradaan spesies netral (atom atawa molekul) di atmosfer kaya oksigen, nitrogen, karbon, hidrogen wan magnesium, nang tadapat pada regolith, masih belum terjelaskan.[88] Uap banyu tadeteksi oleh Chandrayaan-1 wan kandungannya bavariasi manurut garis lintang, lawan titik maksimum ~60–70 derajat; uap banyu naya diduga dihasilakan malalui prusis sublimasi banyu es di regolith.[90] Gas-gas naya bisa babulik ka regolith akibat gravitasi Bulan atawa hilang ka luar angkasa, baik malalui tekanan radiasi surya atawa, amun taionisasi, tasapu oleh medan magnet angin surya.[88]

Musim[babak | babak asal mulanya]

Kemiringan sumbu Bulan tahadap ekliptika hanya 1,5424°,[91] jauh tahaluus matan Bumi (23,44°). Marga ngini, variasi iluminasi surya pada Bulan baisi musim nang jauh tasadikit, wan detail topografi baisi paran panting dalam efek paubahan musim.[92] Badasarakan gambar nang diambil ulih wahana Clementine pada tahun 1994, tadapat ampat wilayah pagunungan di pinggiran kawah Peary di kutub utara Bulan, nang diduga tatap ditarangi ulih Matahari di sapanjang hari Bulan, manciptaakan puncak cahaya abadi. Kadada wilayah kaya nitu nang tadapat di kutub salatan Bulan. Salain nitu, jua tadapat wilayah nang kada manarima cahaya sacara parmanin di hagian bawah kawah kutub,[68] wan kawah-kawah kadap naya suhunya babujuran dingin; Lunar Reconnaissance Orbiter mancatat suhu musim panas parandahnya di kawah kutub salatan mancapai 35 K (−238 °C)[93] wan parak 26 K wayah kajadian titik balik matahari musim dingin di kawah Hermite di kutub utara. Naya adalah suhu pandinginnya di Tata Surya nang suah diukur ulih wahana antariksa, malahan tadingin matan suhu parmukaan Pluto.[92]

Hubungan lawan Bumi[babak | babak asal mulanya]

Earth has a pronounced axial tilt; the Moon's orbit is not perpendicular to Earth's axis, but lies close to Earth's orbital plane.
Skema sistem Bumi-Bulan (tanpa skala konsisten)

Orbit[babak | babak asal mulanya]

Artikal utama: Orbit Bulan dan Teori Bulan

Bulan manuntungakan orbit langkap mangulilingi Bumi saban 27,3 hari sakali[lower-alpha 7] (periode sideris). Tagal marga Bumi bagarak pada orbitnya mangulilingi Matahari di wayah nang basamaan, dibutuhakan waktu nang sadikit talawas gasan Bulan cagar maitihakan fase nang sama ka Bumi, yaitu kitaran 29,5 hari[lower-alpha 8] (periode sinodik).[49] Kada kanya kabanyakan satelit planet nang lain, orbit Bulan taparak ka bidang ekliptika daripada ka bidang khatulistiwa planet. Orbit Bulan diperturbasi ulih Matahari wan Bumi dalam cara nang halus wan kompleks. Misalnya, bidang pagarakan orbit Bulan sacara batahap marasani pagisiran, nang mamangaruhi aspek pagarakan Bulan nang lain. Kajadian naya sacara matematis dijalasakan oleh Hukum Cassini.[94]

Skala pabandingan ukuran wan jarak Bumi-Bulan. Garis kuning marupakan parjalanan cahaya matan Bumi ka Bulan (sekitar 400.000 km atau 250.000 mil) dalam 1,26 detik.

Ukuran relatif[babak | babak asal mulanya]

Ukuran Bulan relatif ganal amun dibandingakan lawan ukuran Bumi, yakni saparampat matan diameter wan 1/81 matan massa Bumi.[49] Bulan adalah satelit alami pangganalnya di Tata Surya manurut ukuran relatif planet nang diorbitnya, bujur Charon taganal gasan ukuran planet katai Pluto, yakni kitaran 1/9 matan massa Pluto.[95] Bujur kaya nitu, Bumi wan Bulan masih dianggap sawagai sistem planet-satelit, lain sistem planet ganda, marga barisentrum kadua banda langit naya baandak 1.700 km (kitaran saparampat radius Bumi) di bawah parmukaan Bumi.[96]

Penampakan dari Bumi[babak | babak asal mulanya]

Penampakan Bulan di langit barat High Desert (California)

Bulan berada pada rotasi sinkron; waktu yang dibutuhkan oleh Bulan untuk berputar pada porosnya kira-kira sama dengan waktu yang dibutuhkan untuk mengorbit Bumi. Oleh sebab itu, Bulan selalu memperlihatkan sisi yang sama pada Bumi. Pada awal sejarahnya, perputaran Bulan lebih lambat dan terjadi penguncian pasang surut pada orientasi ini, terutama karena efek friksional deformasi pasang surut yang dipicu oleh Bumi.[97] Sisi Bulan yang menghadap Bumi disebut dengan sisi dekat, sedangkan sisi yang membelakangi Bumi disebut dengan sisi jauh. Sisi jauh sering kali disalah artikan sebagai "sisi gelap", meskipun pada kenyataannya sisi ini diterangi oleh cahaya sebagaimana halnya sisi dekat. Sekali dalam sebulan, sisi dekat yang gelap bisa disaksikan dari Bumi ketika terjadinya fase bulan baru.[98]

Bulan memiliki albedo yang sangat rendah, dengan tingkat kecerahan yang sedikit lebih terang dari aspal hitam. Meskipun demikian, Bulan adalah benda langit yang paling terang di langit setelah Matahari.[49][lower-alpha 9] Hal ini antara lain disebabkan oleh peningkatan kecerahan akibat efek oposisi; pada fase bulan seperempat, hanya sepersepuluh bagian Bulan yang terang, bukannya seperempat.[99] Selain itu, konstansi warna pada sistem visual Bulan mengkalibrasi hubungan antara warna objek dan sekitarnya; karena langit di sekitar Bulan relatif gelap, Bulan yang diterangi Matahari tampak sebagai benda langit yang terang. Bagian pinggir bulan purnama tampak sama terang dengan bagian tengahnya, tanpa pengelaman tungkai, karena sifat reflektif dari tanah Bulan, yang merefleksikan lebih banyak cahaya ke arah Matahari daripada ke arah lainnya. Bulan terlihat lebih besar saat berada dekat dengan cakrawala, tetapi hal ini hanyalah efek psikologis semata, yang dikenal dengan ilusi Bulan (pertama kali dijelaskan pada abad ke-7 SM).[100] Besaran busur rata-rata bulan purnama adalah sekitar 0,52° di langit, kira-kira sama dengan ukuran Matahari yang terlihat dari Bumi (lihat gerhana).

Citakan:Wide image

Ketinggian Bulan di langit bervariasi; meskipun memiliki batas yang hampir sama dengan Matahari, ketinggiannya berubah seiring dengan fase Bulan dan perubahan musim dalam setahun, dengan ketinggian tertinggi terjadi saat bulan purnama pada waktu musim dingin. Siklus simpul Bulan selama 18,6 tahun juga memiliki pengaruh; ketika simpul naik orbit Bulan berada pada ekuinoks vernal, deklinasi Bulan bisa bergerak sejauh 28° setiap bulannya. Ini berarti Bulan bisa bergerak melintasi garis lintang hingga 28° dari khatulistiwa, bukannya 18°. Orientasi bulan sabit juga bergantung pada garis lintang; di dekat khatulistiwa, bulan sabit bisa diamati dengan teropong bintang.[101]

Jarak antara Bulan dengan Bumi bervariasi, berkisar dari 356.400 km hingga 406.700 km pada perige (titik terdekat) dan apoge (titik terjauh). Pada tanggal 19 Maret 2011, Bulan saat fase penuh berada pada jarak terdekat dengan Bumi, terdekat sejak tahun 1993, yakni 14% lebih dekat dari posisi terjauhnya di apoge.[102] Fenomena ini disebut dengan "bulan super", yang berlangsung selama satu jam pada saat bulan purnama, dan 30% lebih terang daripada biasanya akibat diameter sudutnya 14% lebih besar, karena .[103][104][105] Pada tingkat terendahnya, kecerahan Bulan dari Bumi akan berkurang jika dilihat dengan mata telanjang. Persentase tingkat kecerahan Bulan ditentukan oleh rumus berikut: [106][107]

Ketika reduksi aktual adalah 1,00 / 1,30, atau sekitar 0,770, reduksi terasa kira-kira 0,877, atau 1,00 / 1,14. Hal ini menyebabkan meningkatnya reduksi terasa hingga 14% antara apoge dan perige Bulan pada fase yang sama.[108]

Terdapat perdebatan mengenai apakah permukaan Bulan berubah dari waktu ke waktu. Saat ini, fenomena tersebut dianggap sebagai ilusi semata, yang diakibatkan oleh pengamatan Bulan dalam kondisi pencahayaan yang berbeda, penglihatan astronomi yang buruk, atau gambar yang tidak memadai. Akan tetapi, pelepasan gas kadang-kadang juga terjadi, dan diduga merupakan peristiwa yang menyebabkan fenomena Bulan sementara. Baru-baru ini, muncul pendapat yang menyatakan bahwa sekitar 3 km diameter permukaan Bulan dimodifikasi oleh peristiwa pelepasan gas, yang terjadi sekitar satu juta tahun yang lalu.[109][110] Penampakan Bulan, seperti halnya Matahari, dipengaruhi oleh atmosfer Bumi; efek umumnya adalah cincin halo 22° yang terbentuk saat cahaya Bulan dibiaskan oleh kristal es di awan cirrostratus, dan terbentuknya cincin korona yang lebih kecil saat Bulan ditutupi oleh awan tipis.[111]

Efek pasang surut[babak | babak asal mulanya]

Pasang surut di Bulan umumnya disebabkan oleh adanya kecepatan perubahan intensitas daya tarik gravitasi Bulan pada salah satu sisi Bumi terhadap sisi lainnya, atau disebut dengan gaya pasang surut. Fenomena ini membentuk dua tonjolan pasang surut di Bumi, yang akan terlihat jelas di permukaan laut setelah air surut.[112] Karena Bumi berputar 27 kali lebih cepat daripada Bulan, tonjolan ini bergerak bersama permukaan Bumi lebih cepat daripada pergerakan Bulan, yang berputar mengelilingi Bumi sekali sehari sebagaimana Bulan berputar pada sumbunya.[112] Pasang surut juga dipengaruhi oleh efek lainnya, di antaranya gaya gesek air terhadap sumbu rotasi Bumi melalui lantai samudra, inersia pergerakan air, basin samudra yang mengalami pendangkalan, dan osilasi antara basin samudra berbeda.[113] Daya tarik gravitasi Matahari terhadap samudra Bumi hampir setengah dari daya tarik gravitasi Bulan, dan gravitasi kedua benda langit ini berperan penting dalam menyebabkan pasang surut perbani dan musim semi.[112]

Over one lunar month more than half of the Moon's surface can be seen from the surface of Earth.
Librasi Bulan dalam waktu satu bulan.

Interaksi gravitasi antara Bulan dan tonjolan di sekitar Bulan berfungsi sebagai torsi pada rotasi Bumi, yang menguras momentum sudut dan energi kinetik rotasi dari perputaran Bumi.[112][114] Akibatnya, momentum sudut disertakan ke orbit Bulan, yang mempercepat rotasinya dan menyebabkan Bulan naik ke orbit yang lebih tinggi dan dengan periode yang lebih lama. Oleh sebab itu, jarak antara Bumi dengan Bulan juga akan meningkat, dan perputaran Bumi akan melambat.[114] Pengukuran dengan metode eksperimen rentang Bulan menggunakan reflektor laser yang dilakukan dalam misi Apollo menemukan bahwa jarak Bulan ke Bumi meningkat sekitar 38 mm per tahun[115] (meskipun angka ini hanya 0,10 ppb/tahun dari radius orbit Bulan). Jam atom juga menunjukkan bahwa lama hari di Bumi meningkat sekitar 15 mikrodetik per tahun,[116] yang secara perlahan-lahan memperpanjang waktu UTC yang disesuaikan oleh detik kabisat. Tarikan pasang surut Bulan akan terus berlanjut sampai perputaran Bumi dan periode orbit Bulan sesuai. Namun, Matahari akan berubah menjadi raksasa merah dan memusnahkan Bumi jauh sebelum hal tersebut terjadi.[117][118]

Permukaan Bulan juga mengalami pasang surut dengan amplitudo ~10 cm, yang berlangsung selama 27 hari lebih. Fenomena ini disebabkan oleh dua hal, yakni karena Bulan dan Bumi berada pada rotasi sinkron, dan berbagai hal yang disebabkan oleh Matahari.[114] Komponen Bumi yang diinduksi terbentuk karena librasi, yang diakibatkan oleh eksentrisitas orbit Bulan; jika orbit Bulan bulat sempurna, maka yang akan muncul hanyalah pasang surut surya.[114] Librasi juga mengubah sudut penampakan Bulan, yang menyebabkan sekitar 59% permukaan Bulan terlihat dari Bumi.[49] Efek kumulatif dari fenomena pasang surut memicu terjadinya gempa bulan. Gempa bulan ini lebih jarang terjadi dan lebih lemah kekuatannya daripada gempa bumi, meskipun gempa ini dapat bertahan hingga satu jam karena ketiadaan air yang berfungsi sebagai peredam getaran seismik. Fenomena gempa bulan ini merupakan penemuan tak terduga dari seismometer yang diletakkan di Bulan oleh astronaut Apollo dari tahun 1969 hingga 1972.[119]

Garaha[babak | babak asal mulanya]

The bright disk of the Sun, showing many coronal filaments, flares and grainy patches in the wavelength of this image, is partly obscured by a small dark disk: here, the Moon covers less than a fifteenth of the Sun.
Bulan balalu di hadapan Matahari, dikudak ulih wahana STEREO-B.[120]
Matan Bumi, Bulan wan Matahari talihat baukuran sama. Matan satelit di orbit Bumi, Bulan kalihatan tahalus matan Matahari.

Garaha kawa kajadian wayah Matahari, Bumi, wan Bulan bagana pada sabuting garis lurus (disambat lawan "syzygy"). Garaha matahari kajadian wayah bulan hanyar, wayah Bulan bagana di antara Matahari wan Bulan. Sabaliknya, garaha bulan kajadian wayah bulan purnama, wayah Bumi bagana di antara Matahari wan Bulan. Ukuran Bulan nang kalihatan matan Bumi kikira sama lawan ukuran Matahari. Tagal, ukuran Matahari jauh taganal pada ukuran Bulan; jarak antara Matahari wan Bulan nang jauh banar maulah ukuran kadua banda langit naya kalihatan sama matan Bumi. Variasi ukuran naya, nang diulah ulih orbit nonsirkuler, jua pina sama, bujur kajadian dalam siklus nang balain. Hal naya maulah kajadian garaha matahari total (wayah Bulan kalihatan taganal pada Matahari) wan cincin (wayah Bulan kalihatan tahalus pada Matahari).[121] Wayah garaha total, Bulan sabigian manukupi cakram Matahari wan korona surya, nang kawa diitihi lawan mata tilanjang matan Bumi. Marga jarak antara Matahari wan Bulan maningkat sacara bagamat matan waktu ka waktu,[112] diameter buncu Bulan mangalami panurunan. Salain nitu, marga Matahari baevolusi jadi raksasa habang, ukuran Matahari wan diameter tampaknya di langit jua maningkat bagamatan.[lower-alpha 10] Papaduan kadua kajadian naya mambuktiakan bahwa ratusan yuta tahun nang bahari, Bulan cagar saban manukupi Matahari wayah tajadinya garaha matahari, wan mungkin kadada garaha cincin nang kajadian wayah itu. Kaya nitu jua ratusan yuta tahun nang pacangan datang, Bulan kada lagi manukupi Matahari sabigian, wan garaha matahari total kada pacangan kajadian.[122]

Orbit Bulan nang mangulilingi Bumi mangalami inklinasi kitaran 5° matan orbit Bumi mangulilingi Matahari, jadinya garaha kada kajadian wayah saban bulan hanyar wan bulan purnama. Garaha pacangan kajadian amun Bulan bagana di parak pasimpangan dua bidang orbit.[123] Periodisasi wan rekurs garaha matahari oleh Bulan, lawan garaha bulan oleh Bumi, kawa dijalasakan malalui teori saros, nang baisi jangka waktu kitaran 18 tahun.[124]

Marga Bulan mahalangi pandangan manusia kitaran satangah darajat lingkaran pada area langit,[lower-alpha 11][125] kajadian tarait kaya okultasi kajadian wayah sabuting bintang atawa planet tarang balalu di hagian balakang Bulan wan marasani okultasi, atawa tapatak matan itihan. Mahirip lawan kajadian naya, garaha matahari kajadian wayah Matahari tapatak matan itihan marga tatukupi Bulan. Marga jarak Bulan taparak lawan Bumi, okultasi bintang tunggal kada kawa talihat matan wadah mana haja di parmukaan Bumi pada waktu nang basamaan. Presesi pada orbit Bulan jua maulah kajadian okultasi nang balainan saban tahun.[126]

Kaki[babak | babak asal mulanya]

Catatan[babak | babak asal mulanya]

  1. ^ Nilai maksimum didasarakan pada skala katarangan matan nilai -12,74 nang dibariakan gasan jarak khatulistiwa ka pusat Bulan, atawa 378.000 manurut NASA, hingga jarak minimum Bumi-Bulan nang dicantumakan disini, imbah disasuaiakan lawan radius khatulistiwa Bumi, yakni 6.378, sahingga jaraknya adalah 350.600 km. Nilai minimum (saat bulan hanyar) didasarakan pada skala nang sama lawan mamakai jarak Bumi-Bulan maksimum, atawa 407.000 km, wan lawan mahitung katarangan cahaya bulan wayah bulan hanyar. Katarangan cahaya bulan adalah Albedo Bumi × (radius bumi / Radius orbit Bulan)2 ] rilatif tahadap pancahayaan langsung dari Matahari nang tajadi saat bulan purnama. (Albedo Bumi = 0.367; Radius Bumi = radius (kutub × radius khatulistiwa)½ = 6 367 km.)
  2. ^ Kisaran nilai ukuran buncu nang dicantumakan badasarakan pada skala sederhana matan nilai nang tadapat dalam referensi: jarak khatulistiwa Bumi ka pusat Bulan adalah 378.000 km, ukuran sudutnya adalah 1.896 detik busur. Referensi nang sama mancantumakan jarak ekstrem Bumi-Bulan adalah 407.000 km wan 357.km 000. Gasan manantuakan ukuran buncu maksimum, jarak minimum harus dikoreksi sesuai lawan radius khatulistiwa bumi, yakni 6.378 km, sehingga hasilnya 350.600 km.
  3. ^ Lucey et al. (2006) manyataakan 107 partikel cm−3 pada siang hari wan 105 partikel cm−3 pada malam hari. Akibat suhu permukaan khatulistiwa nang mencapai 390 K pada siang hari wan 100 K pada malam hari, hukum gas ideal mahasilakan tikinan nang sawagaimana nang dicantumakan pada kotak info (dibulatkan hingga mamaraki urutan magnitudo): 10−7 Pa pada siang hari wan 10−10 Pa pada malam hari.
  4. ^ Tadapat sajumlah asteroid parak Bumi, tamasuk 3753 Cruithne, nang mako-orbit Bumi: orbit buhannya manjauhi Bumi gasan beberapa periode waktu tagal imbahnya manggawi paorbitan dalam waktu lawas (Morais et al, 2002). Adapula quasi-satelit – buhannya lain satelit marga buhannya kada maorbit Bumi. Gasan informasi talanjut, itihi Satelit Bumi nang lain.
  5. ^ Charon secara proporsional taganal gasan ukuran Pluto, tetapi Pluto telah direklasifikasi sebagai planet katai.
  6. ^ Usia naya dihitung matan penanggalan isotop batuan Bulan.
  7. ^ Lebih tepatnya, periode sidereal Bulan (bintang tetap ke bintang tetap) adalah 27,321661 hari (27h 07j 43m 11,5d), dan periode orbit tropis rata-ratanya (dari ekuinoks ke ekuinoks) adalah 27,321582 hari (27h 07j 43m 04,7d) (Explanatory Supplement to the Astronomical Ephemeris, 1961, pada hal.107).
  8. ^ Lebih tepatnya, periode sinodis rata-rata Bulan (antara rata-rata konjungsi matahari) adalah 29,530589 hari (29h 12j 44m 02,9d) (Explanatory Supplement to the Astronomical Ephemeris, 1961, pada hal.107).
  9. ^ Magnitudo tampak Matahari adalah −26.7, dan magnitudo tampak bulan purnama adalah −12.7.
  10. ^ Lihat grafik di Matahari#Fase hidup. Saat ini, diameter Matahari meningkat dengan laju sekitar lima persen per miliar tahun. Angka ini hampir sama dengan laju diameter sudut Bulan yang berkurang karena surut dari Bumi.
  11. ^ Secara rata-rata, Bulan meliputi area seluas 0,21078 derajat persegi di langit malam.

Referensi[babak | babak asal mulanya]

  1. ^ a b c d e f g h i j k l Wieczorek, M.; et al. (2006). "The constitution and structure of the lunar interior". Reviews in Mineralogy and Geochemistry. 60 (1): 221–364. doi:10.2138/rmg.2006.60.3. 
  2. ^ a b Lang, Kenneth R. (2011); The Cambridge Guide to the Solar System, 2nd ed., Cambridge University Press
  3. ^ a b c d e Williams, Dr. David R. (2 February 2006). "Moon Fact Sheet". NASA (National Space Science Data Center). Diakses tanggal 31 December 2008. 
  4. ^ Matthews, Grant (2008). "Celestial body irradiance determination from an underfilled satellite radiometer: application to albedo and thermal emission measurements of the Moon using CERES". Applied Optics. 47 (27): 4981–93. Bibcode:2008ApOpt..47.4981M. doi:10.1364/AO.47.004981. PMID 18806861. 
  5. ^ A.R. Vasavada, D.A. Paige, and S.E. Wood (1999). "Near-Surface Temperatures on Mercury and the Moon and the Stability of Polar Ice Deposits". Icarus. 141 (2): 179. Bibcode:1999Icar..141..179V. doi:10.1006/icar.1999.6175. 
  6. ^ a b c Lucey, P.; Korotev, Randy L.; et al. (2006). "Understanding the lunar surface and space-Moon interactions". Reviews in Mineralogy and Geochemistry. 60 (1): 83–219. doi:10.2138/rmg.2006.60.2. 
  7. ^ Morais, M.H.M. (2002). "The Population of Near-Earth Asteroids in Coorbital Motion with the Earth". Icarus. 160 (1): 1–9. Bibcode:2002Icar..160....1M. doi:10.1006/icar.2002.6937. 
  8. ^ http://lasp.colorado.edu/life/GEOL5835/Moon_presentation_19Sept.pdf
  9. ^ "Naming Astronomical Objects: Spelling of Names". International Astronomical Union. Diakses tanggal 29 March 2010. 
  10. ^ "Gazetteer of Planetary Nomenclature: Planetary Nomenclature FAQ". USGS Astrogeology Research Program. Diakses tanggal 29 March 2010. 
  11. ^ Barnhart, Robert K. (1995). The Barnhart Concise Dictionary of Etymology. USA: Harper Collins. hlm. 487. ISBN 978-0-06-270084-1. 
  12. ^ "Oxford English Dictionary: lunar, a. and n". Oxford English Dictionary: Second Edition 1989. Oxford University Press. Diakses tanggal 23 March 2010. 
  13. ^ Kleine, T. (2005). "Hf–W Chronometry of Lunar Metals and the Age and Early Differentiation of the Moon". Science. 310 (5754): 1671–1674. Bibcode:2005Sci...310.1671K. doi:10.1126/science.1118842. PMID 16308422. 
  14. ^ "Carnegie Institution for Science research". Diakses tanggal 2013-10-12. 
  15. ^ "Phys.org's account of Carlson's presentation to the Royal Society". Diakses tanggal 2013-10-13. 
  16. ^ Binder, A.B. (1974). "On the origin of the Moon by rotational fission". The Moon. 11 (2): 53–76. Bibcode:1974Moon...11...53B. doi:10.1007/BF01877794. 
  17. ^ a b Stroud, Rick (2009). The Book of the Moon. Walken and Company. hlm. 24–27. ISBN 978-0-8027-1734-4. 
  18. ^ Mitler, H.E. (1975). "Formation of an iron-poor moon by partial capture, or: Yet another exotic theory of lunar origin". Icarus. 24 (2): 256–268. Bibcode:1975Icar...24..256M. doi:10.1016/0019-1035(75)90102-5. 
  19. ^ Stevenson, D.J. (1987). "Origin of the moon–The collision hypothesis". Annual Review of Earth and Planetary Sciences. 15 (1): 271–315. Bibcode:1987AREPS..15..271S. doi:10.1146/annurev.ea.15.050187.001415. 
  20. ^ Taylor, G. Jeffrey (31 December 1998). "Origin of the Earth and Moon". Planetary Science Research Discoveries. Diakses tanggal 7 April 2010. 
  21. ^ Canup, R. (2001). "Origin of the Moon in a giant impact near the end of Earth's formation". Nature. 412 (6848): 708–712. Bibcode:2001Natur.412..708C. doi:10.1038/35089010. PMID 11507633. 
  22. ^ "Earth-Asteroid Collision Formed Moon Later Than Thought". News.nationalgeographic.com. 28 October 2010. Diakses tanggal 7 May 2012. 
  23. ^ "Salinan arsip" (PDF). Diarsipkan dari versi asli (PDF) tanggal 2018-07-27. Diakses tanggal 2021-02-04. 
  24. ^ Touboul, M.; Kleine, T.; Bourdon, B.; Palme, H.; Wieler, R. (2007). "Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals". Nature. 450 (7173): 1206–9. Bibcode:2007Natur.450.1206T. doi:10.1038/nature06428. PMID 18097403. 
  25. ^ Pahlevan, Kaveh (2007). "Equilibration in the aftermath of the lunar-forming giant impact". Earth and Planetary Science Letters. 262 (3–4): 438–449. arXiv:1012.5323alt=Dapat diakses gratis. Bibcode:2007E&PSL.262..438P. doi:10.1016/j.epsl.2007.07.055. 
  26. ^ Nield, Ted (2009). "Moonwalk (summary of meeting at Meteoritical Society's 72nd Annual Meeting, Nancy, France)". Geoscientist. 19: 8. 
  27. ^ a b Warren, P. H. (1985). "The magma ocean concept and lunar evolution". Annual review of earth and planetary sciences. 13 (1): 201–240. Bibcode:1985AREPS..13..201W. doi:10.1146/annurev.ea.13.050185.001221. 
  28. ^ Tonks, W. Brian (1993). "Magma ocean formation due to giant impacts". Journal of Geophysical Research. 98 (E3): 5319–5333. Bibcode:1993JGR....98.5319T. doi:10.1029/92JE02726. 
  29. ^ Daniel Clery (11 October 2013). "Impact Theory Gets Whacked". Science. 342: 183. 
  30. ^ Wiechert, U.; et al. (October 2001). "Oxygen Isotopes and the Moon-Forming Giant Impact". Science. Science (jurnal). 294 (12): 345–348. Bibcode:2001Sci...294..345W. doi:10.1126/science.1063037. PMID 11598294. Diakses tanggal 2009-07-05. 
  31. ^ Pahlevan, Kaveh; Stevenson, David (October 2007). "Equilibration in the Aftermath of the Lunar-forming Giant Impact". EPSL. 262 (3–4): 438–449. arXiv:1012.5323alt=Dapat diakses gratis. Bibcode:2007E&PSL.262..438P. doi:10.1016/j.epsl.2007.07.055. 
  32. ^ "Titanium Paternity Test Says Earth is the Moon's Only Parent (University of Chicago)". Astrobio.net. Diakses tanggal 2013-10-03. 
  33. ^ Taylor, Stuart Ross (1975). Lunar science: A post-Apollo view. New York, Pergamon Press, Inc. hlm. 64. 
  34. ^ "NASA Research Team Reveals Moon Has Earth-Like Core". NASA. January 6, 2011. 
  35. ^ Nemchin, A.; Timms, N.; Pidgeon, R.; Geisler, T.; Reddy, S.; Meyer, C. (2009). "Timing of crystallization of the lunar magma ocean constrained by the oldest zircon". Nature Geoscience. 2 (2): 133–136. Bibcode:2009NatGe...2..133N. doi:10.1038/ngeo417. 
  36. ^ a b Shearer, C.; et al. (2006). "Thermal and magmatic evolution of the Moon". Reviews in Mineralogy and Geochemistry. 60 (1): 365–518. doi:10.2138/rmg.2006.60.4. 
  37. ^ Schubert, J. (2004). "Interior composition, structure, and dynamics of the Galilean satellites.". Dalam F. Bagenal; et al. Jupiter: The Planet, Satellites, and Magnetosphere. Cambridge University Press. hlm. 281–306. ISBN 978-0-521-81808-7. 
  38. ^ Williams, J.G. (2006). "Lunar laser ranging science: Gravitational physics and lunar interior and geodesy". Advances in Space Research. 37 (1): 6771. arXiv:gr-qc/0412049alt=Dapat diakses gratis. Bibcode:2006AdSpR..37...67W. doi:10.1016/j.asr.2005.05.013. 
  39. ^ "Landscapes from the ancient and eroded lunar far side". esa. Diakses tanggal 15 February 2010. 
  40. ^ Spudis, Paul D.; Cook, A.; Robinson, M.; Bussey, B.; Fessler, B.; Cook; Robinson; Bussey; Fessler (January 1998). "Topography of the South Polar Region from Clementine Stereo Imaging". Workshop on New Views of the Moon: Integrated Remotely Sensed, Geophysical, and Sample Datasets: 69. Bibcode:1998nvmi.conf...69S. 
  41. ^ a b c Spudis, Paul D. (1994). "Ancient Multiring Basins on the Moon Revealed by Clementine Laser Altimetry". Science. 266 (5192): 1848–1851. Bibcode:1994Sci...266.1848S. doi:10.1126/science.266.5192.1848. PMID 17737079. 
  42. ^ Pieters, C.M.; Tompkins, S.; Head, J.W.; Hess, P.C. (1997). "Mineralogy of the Mafic Anomaly in the South Pole‐Aitken Basin: Implications for excavation of the lunar mantle". Geophysical Research Letters. 24 (15): 1903–1906. Bibcode:1997GeoRL..24.1903P. doi:10.1029/97GL01718. 
  43. ^ Taylor, G.J. (17 July 1998). "The Biggest Hole in the Solar System". Planetary Science Research Discoveries, Hawai'i Institute of Geophysics and Planetology. Diakses tanggal 12 April 2007. 
  44. ^ Schultz, P. H. (March 1997). "Forming the south-pole Aitken basin – The extreme games". Conference Paper, 28th Annual Lunar and Planetary Science Conference. 28: 1259. Bibcode:1997LPI....28.1259S. 
  45. ^ Wlasuk, Peter (2000). Observing the Moon. Springer. hlm. 19. ISBN 978-1-85233-193-1. 
  46. ^ Norman, M. (21 April 2004). "The Oldest Moon Rocks". Planetary Science Research Discoveries. Diakses tanggal 12 April 2007. 
  47. ^ Varricchio, L. (2006). Inconstant Moon. Xlibris Books. ISBN 978-1-59926-393-9. 
  48. ^ Head, L.W.J.W. (2003). "Lunar Gruithuisen and Mairan domes: Rheology and mode of emplacement". Journal of Geophysical Research. 108 (E2): 5012. Bibcode:2003JGRE..108.5012W. doi:10.1029/2002JE001909. Diakses tanggal 12 April 2007. 
  49. ^ a b c d e Spudis, P.D. (2004). "Moon". World Book Online Reference Center, NASA. Diarsipkan dari versi asli tanggal 2007-04-17. Diakses tanggal 12 April 2007. 
  50. ^ Gillis, J.J.; Spudis (1996). "The Composition and Geologic Setting of Lunar Far Side Maria". Lunar and Planetary Science. 27: 413–404. Bibcode:1996LPI....27..413G. 
  51. ^ Lawrence; D. J.; et al. (11 August 1998). "Global Elemental Maps of the Moon: The Lunar Prospector Gamma-Ray Spectrometer". Science. HighWire Press. 281 (5382): 1484–1489. Bibcode:1998Sci...281.1484L. doi:10.1126/science.281.5382.1484. ISSN 1095-9203. PMID 9727970. Diakses tanggal 29 August 2009. 
  52. ^ Taylor, G.J. (31 August 2000). "A New Moon for the Twenty-First Century". Planetary Science Research Discoveries, Hawai'i Institute of Geophysics and Planetology. Diakses tanggal 12 April 2007. 
  53. ^ a b Papike, J. (1998). "Lunar Samples". Reviews in Mineralogy and Geochemistry. 36: 5.1–5.234. 
  54. ^ a b Hiesinger, H. (2003). "Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Numbium, Mare Cognitum, and Mare Insularum". J. Geophys. Res. 108 (E7): 1029. Bibcode:2003JGRE..108.5065H. doi:10.1029/2002JE001985. 
  55. ^ Munsell, K. (4 December 2006). "Majestic Mountains". Solar System Exploration. NASA. Diarsipkan dari versi asli tanggal 2008-09-17. Diakses tanggal 12 April 2007. 
  56. ^ Richard Lovett. "Early Earth may have had two moons : Nature News". Nature.com. Diakses tanggal 2012-11-01. 
  57. ^ "Was our two-faced moon in a small collision?". Theconversation.edu.au. Diakses tanggal 2012-11-01. 
  58. ^ Melosh, H. J. (1989). Impact cratering: A geologic process. Oxford Univ. Press. ISBN 978-0-19-504284-9. 
  59. ^ "Moon Facts". SMART-1. European Space Agency. 2010. Diakses tanggal 12 May 2010. 
  60. ^ "Gazetteer of Planetary Nomenclature: Categories for Naming Features on Planets and Satellites". U.S. Geological Survey. Diakses tanggal 8 April 2010. 
  61. ^ a b Wilhelms, Don (1987). "Geologic History of the Moon" (PDF). U.S. Geological Survey.  Parameter |chapter= akan diabaikan (bantuan)
  62. ^ Hartmann, William K.; Quantin, Cathy; Mangold, Nicolas (2007). "Possible long-term decline in impact rates: 2. Lunar impact-melt data regarding impact history". Icarus. 186 (1): 11–23. Bibcode:2007Icar..186...11H. doi:10.1016/j.icarus.2006.09.009. 
  63. ^ "The Smell of Moondust". NASA. 30 January 2006. Diarsipkan dari versi asli tanggal 2010-03-08. Diakses tanggal 15 March 2010. 
  64. ^ Heiken, G. (1991). Lunar Sourcebook, a user's guide to the Moon. New York: Cambridge University Press. hlm. 736. ISBN 978-0-521-33444-0. 
  65. ^ Rasmussen, K.L. (1985). "Megaregolith thickness, heat flow, and the bulk composition of the Moon". Nature. 313 (5998): 121–124. Bibcode:1985Natur.313..121R. doi:10.1038/313121a0. 
  66. ^ Margot, J. L.; Campbell, D. B.; Jurgens, R. F.; Slade, M. A. (4 June 1999). "Topography of the Lunar Poles from Radar Interferometry: A Survey of Cold Trap Locations". Science. 284 (5420): 1658–1660. Bibcode:1999Sci...284.1658M. doi:10.1126/science.284.5420.1658. PMID 10356393. 
  67. ^ Ward, William R. (1 August 1975). "Past Orientation of the Lunar Spin Axis". Science. 189 (4200): 377–379. Bibcode:1975Sci...189..377W. doi:10.1126/science.189.4200.377. PMID 17840827. 
  68. ^ a b Martel, L. M. V. (4 June 2003). "The Moon's Dark, Icy Poles". Planetary Science Research Discoveries, Hawai'i Institute of Geophysics and Planetology. Diakses tanggal 12 April 2007. 
  69. ^ Seedhouse, Erik (2009). Lunar Outpost: The Challenges of Establishing a Human Settlement on the Moon. Springer-Praxis Books in Space Exploration. Germany: Springer Praxis. hlm. 136. ISBN 978-0-387-09746-6. 
  70. ^ Coulter, Dauna (18 March 2010). "The Multiplying Mystery of Moonwater". Science@NASA. Diarsipkan dari versi asli tanggal 2016-05-16. Diakses tanggal 28 March 2010. 
  71. ^ Spudis, P. (6 November 2006). "Ice on the Moon". The Space Review. Diakses tanggal 12 April 2007. 
  72. ^ Feldman, W. C. (1998). "Fluxes of Fast and Epithermal Neutrons from Lunar Prospector: Evidence for Water Ice at the Lunar Poles". Science. 281 (5382): 1496–1500. Bibcode:1998Sci...281.1496F. doi:10.1126/science.281.5382.1496. PMID 9727973. 
  73. ^ Saal, Alberto E. (2008). "Volatile content of lunar volcanic glasses and the presence of water in the Moon's interior". Nature. 454 (7201): 192–195. Bibcode:2008Natur.454..192S. doi:10.1038/nature07047. PMID 18615079. 
  74. ^ Pieters, C. M. (2009). "Character and Spatial Distribution of OH/H2O on the Surface of the Moon Seen by M3 on Chandrayaan-1". Science. 326 (5952): 568–72. Bibcode:2009Sci...326..568P. doi:10.1126/science.1178658. PMID 19779151. 
  75. ^ Lakdawalla, Emily (13 November 2009). "LCROSS Lunar Impactor Mission: "Yes, We Found Water!"". The Planetary Society. Diakses tanggal 13 April 2010. 
  76. ^ "Water and More: An Overview of LCROSS Impact Results". 41st Lunar and Planetary Science Conference. 41 (1533): 2335. 1–5 March 2010. Bibcode:2010LPI....41.2335C. 
  77. ^ Colaprete, A.; Schultz, P.; Heldmann, J.; Wooden, D.; Shirley, M.; Ennico, K.; Hermalyn, B.; Marshall, W; Ricco, A.; Elphic, R. C.; Goldstein, D.; Summy, D.; Bart, G. D.; Asphaug, E.; Korycansky, D.; Landis, D.; Sollitt, L. (22 October 2010). "Detection of Water in the LCROSS Ejecta Plume". Science. 330 (6003): 463–468. Bibcode:2010Sci...330..463C. doi:10.1126/science.1186986. PMID 20966242. 
  78. ^ Hauri, Erik (26 May 2011). "High Pre-Eruptive Water Contents Preserved in Lunar Melt Inclusions". Science Express. 10 (1126): 213. Bibcode:2011Sci...333..213H. doi:10.1126/science.1204626. 
  79. ^ Muller, P. (1968). "Mascons: lunar mass concentrations". Science. 161 (3842): 680–684. Bibcode:1968Sci...161..680M. doi:10.1126/science.161.3842.680. PMID 17801458. 
  80. ^ Richard A. Kerr (12 April 2013). "The Mystery of Our Moon's Gravitational Bumps Solved?". Science. 340: 128. 
  81. ^ Konopliv, A. (2001). "Recent gravity models as a result of the Lunar Prospector mission". Icarus. 50 (1): 1–18. Bibcode:2001Icar..150....1K. doi:10.1006/icar.2000.6573. 
  82. ^ Garrick-Bethell, Ian; Weiss, iBenjamin P.; Shuster, David L.; Buz, Jennifer (2009). "Early Lunar Magnetism". Science. 323 (5912): 356–359. Bibcode:2009Sci...323..356G. doi:10.1126/science.1166804. PMID 19150839. 
  83. ^ "Magnetometer / Electron Reflectometer Results". Lunar Prospector (NASA). 2001. Diarsipkan dari versi asli tanggal 2010-05-27. Diakses tanggal 17 March 2010. 
  84. ^ Hood, L.L. (1991). "Formation of magnetic anomalies antipodal to lunar impact basins: Two-dimensional model calculations". J. Geophys. Res. 96 (B6): 9837–9846. Bibcode:1991JGR....96.9837H. doi:10.1029/91JB00308. 
  85. ^ "Moon Storms". Science.nasa.gov. 2013-09-27. Diakses tanggal 2013-10-03. 
  86. ^ Globus, Ruth (1977). "Chapter 5, Appendix J: Impact Upon Lunar Atmosphere". Dalam Richard D. Johnson & Charles Holbrow. Space Settlements: A Design Study. NASA. Diarsipkan dari versi asli tanggal 2010-05-31. Diakses tanggal 17 March 2010. 
  87. ^ Crotts, Arlin P.S. (2008). "Lunar Outgassing, Transient Phenomena and The Return to The Moon, I: Existing Data" (PDF). The Astrophysical Journal. Department of Astronomy, Columbia University. 687: 692. arXiv:0706.3949alt=Dapat diakses gratis. Bibcode:2008ApJ...687..692C. doi:10.1086/591634. Diakses tanggal 29 September 2009. 
  88. ^ a b c Stern, S.A. (1999). "The Lunar atmosphere: History, status, current problems, and context". Rev. Geophys. 37 (4): 453–491. Bibcode:1999RvGeo..37..453S. doi:10.1029/1999RG900005. 
  89. ^ Lawson, S. (2005). "Recent outgassing from the lunar surface: the Lunar Prospector alpha particle spectrometer". J. Geophys. Res. 110 (E9): 1029. Bibcode:2005JGRE..11009009L. doi:10.1029/2005JE002433. 
  90. ^ Sridharan, R. (2010). "'Direct' evidence for water (H2O) in the sunlit lunar ambience from CHACE on MIP of Chandrayaan I". Planetary and Space Science. 58 (6): 947. Bibcode:2010P&SS...58..947S. doi:10.1016/j.pss.2010.02.013. 
  91. ^ Hamilton, Calvin J.; Hamilton, Rosanna L., The Moon, Views of the Solar System, 1995–2011
  92. ^ a b Amos, Jonathan (16 December 2009). "'Coldest place' found on the Moon". BBC News. Diakses tanggal 20 March 2010. 
  93. ^ "Diviner News". UCLA. 17 September 2009. Diarsipkan dari versi asli tanggal 2010-03-07. Diakses tanggal 17 March 2010. 
  94. ^ V V Belet︠s︡kiĭ (2001). Essays on the Motion of Celestial Bodies. Birkhäuser. hlm. 183. ISBN 978-3-7643-5866-2. 
  95. ^ "Space Topics: Pluto and Charon". The Planetary Society. Diakses tanggal 6 April 2010. 
  96. ^ "Planet Definition Questions & Answers Sheet". International Astronomical Union. 2006. Diarsipkan dari versi asli tanggal 2012-03-15. Diakses tanggal 24 March 2010. 
  97. ^ Alexander, M. E. (1973). "The Weak Friction Approximation and Tidal Evolution in Close Binary Systems". Astrophysics and Space Science. 23 (2): 459–508. Bibcode:1973Ap&SS..23..459A. doi:10.1007/BF00645172. 
  98. ^ Phil Plait. "Dark Side of the Moon". Bad Astronomy:Misconceptions. Diakses tanggal 15 February 2010. 
  99. ^ Luciuk, Mike. "How Bright is the Moon?". Amateur Astronomers, Inc. Diakses tanggal 16 March 2010. 
  100. ^ Hershenson, Maurice (1989). The Moon illusion. Routledge. hlm. 5. ISBN 978-0-8058-0121-7. 
  101. ^ Spekkens, K. (18 October 2002). "Is the Moon seen as a crescent (and not a "boat") all over the world?". Curious About Astronomy. Diakses tanggal 16 March 2010. 
  102. ^ "Full moon tonight is as close as it gets". The Press Enterprise. 18 March 2011. Diarsipkan dari versi asli tanggal 2011-03-22. Diakses tanggal 19 March 2011. 
  103. ^ Dr. Tony Phillips (16 March 2011). "Super Full Moon". NASA. Diakses tanggal 19 March 2011. 
  104. ^ Richard K. De Atley (18 March 2011). "Full moon tonight is as close as it gets". The Press-Enterprise. Diarsipkan dari versi asli tanggal 2011-03-22. Diakses tanggal 19 March 2011. 
  105. ^ "'Super moon' to reach closest point for almost 20 years". The Guardian. 19 March 2011. Diakses tanggal 19 March 2011. 
  106. ^ Georgia State University, Dept. of Physics (Astronomy). "Perceived Brightness". Brightnes and Night/Day Sensitivity. Georgia State University, GA, USA. Diakses tanggal 25 January 2014. 
  107. ^ Lutron. "Measured light vs. perceived light" (PDF). From IES Lighting Handbook 2000, 27-4. Lutron.com. Diakses tanggal 25 January 2014. 
  108. ^ Walker, John (May 1997). "Inconstant Moon". Earth and Moon Viewer. Fourth paragraph of "How Bright the Moonlight": Fourmilab, Switzerland. Diakses tanggal 23 January 2014. 14% [...] karena respons logaritma mata manusia. 
  109. ^ Taylor, G.J. (8 November 2006). "Recent Gas Escape from the Moon". Planetary Science Research Discoveries, Hawai'i Institute of Geophysics and Planetology. Diakses tanggal 4 April 2007. 
  110. ^ Schultz, P.H. (2006). "Lunar activity from recent gas release". Nature. 444 (7116): 184–186. Bibcode:2006Natur.444..184S. doi:10.1038/nature05303. PMID 17093445. 
  111. ^ "22 Degree Halo: a ring of light 22 degrees from the sun or moon". Department of Atmospheric Sciences at the University of Illinois at Urbana-Champaign. Diakses tanggal 13 April 2010. 
  112. ^ a b c d e Lambeck, K. (1977). "Tidal Dissipation in the Oceans: Astronomical, Geophysical and Oceanographic Consequences". Philosophical Transactions of the Royal Society A. 287 (1347): 545–594. Bibcode:1977RSPTA.287..545L. doi:10.1098/rsta.1977.0159. 
  113. ^ Le Provost, C. (1995). "Ocean Tides for and from TOPEX/POSEIDON". Science. 267 (5198): 639–42. Bibcode:1995Sci...267..639L. doi:10.1126/science.267.5198.639. PMID 17745840. 
  114. ^ a b c d Touma, Jihad (1994). "Evolution of the Earth-Moon system". The Astronomical Journal. 108 (5): 1943–1961. Bibcode:1994AJ....108.1943T. doi:10.1086/117209. 
  115. ^ Chapront, J. (2002). "A new determination of lunar orbital parameters, precession constant and tidal acceleration from LLR measurements". Astronomy and Astrophysics. 387 (2): 700–709. Bibcode:2002A&A...387..700C. doi:10.1051/0004-6361:20020420. 
  116. ^ Ray, R. (15 May 2001). "Ocean Tides and the Earth's Rotation". IERS Special Bureau for Tides. Diarsipkan dari versi asli tanggal 2010-03-27. Diakses tanggal 17 March 2010. 
  117. ^ Murray, C.D. and Dermott, S.F. (1999). Solar System Dynamics. Cambridge University Press. hlm. 184. ISBN 978-0-521-57295-8. 
  118. ^ Dickinson, Terence (1993). From the Big Bang to Planet X. Camden East, Ontario: Camden House. hlm. 79–81. ISBN 978-0-921820-71-0. 
  119. ^ Latham, Gary; Ewing, Maurice; Dorman, James; Lammlein, David; Press, Frank; Toksőz, Naft; Sutton, George; Duennebier, Fred; Nakamura, Yosio (1972). "Moonquakes and lunar tectonism". Earth, Moon, and Planets. 4 (3–4): 373–382. Bibcode:1972Moon....4..373L. doi:10.1007/BF00562004. 
  120. ^ Phillips, Tony (12 March 2007). "Stereo Eclipse". Science@NASA. Diarsipkan dari versi asli tanggal 2008-06-10. Diakses tanggal 17 March 2010. 
  121. ^ Espenak, F. (2000). "Solar Eclipses for Beginners". MrEclipse. Diakses tanggal 17 March 2010. 
  122. ^ Walker, John (July 10, 2004). "Moon near Perigee, Earth near Aphelion". Fourmilab. Diakses tanggal December 25, 2013. 
  123. ^ Thieman, J. (2 May 2006). "Eclipse 99, Frequently Asked Questions". NASA. Diarsipkan dari versi asli tanggal 2007-02-11. Diakses tanggal 12 April 2007. 
  124. ^ Espenak, F. "Saros Cycle". NASA. Diarsipkan dari versi asli tanggal 24 May 2012. Diakses tanggal 17 March 2010. 
  125. ^ Guthrie, D.V. (1947). "The Square Degree as a Unit of Celestial Area". Popular Astronomy. 55: 200–203. Bibcode:1947PA.....55..200G. 
  126. ^ "Total Lunar Occultations". Royal Astronomical Society of New Zealand. Diarsipkan dari versi asli tanggal 2013-02-05. Diakses tanggal 17 March 2010. 

Kasalahan pangutipan: Tag <ref> dengan nama "Sarma-Ast-Ind" yang didefinisikan di <references> tidak digunakan pada teks sebelumnya.
Kasalahan pangutipan: Tag <ref> dengan nama "Hall1977" yang didefinisikan di <references> tidak digunakan pada teks sebelumnya.
Kasalahan pangutipan: Tag <ref> dengan nama "CNN" yang didefinisikan di <references> tidak digunakan pada teks sebelumnya.
Kasalahan pangutipan: Tag <ref> dengan nama "xinhua_20090301" yang didefinisikan di <references> tidak digunakan pada teks sebelumnya.
Kasalahan pangutipan: Tag <ref> dengan nama "unoosa_q6" yang didefinisikan di <references> tidak digunakan pada teks sebelumnya.
Kasalahan pangutipan: Tag <ref> dengan nama "unoosa_q4" yang didefinisikan di <references> tidak digunakan pada teks sebelumnya.
Kasalahan pangutipan: Tag <ref> dengan nama "unoosa_q5" yang didefinisikan di <references> tidak digunakan pada teks sebelumnya.
Kasalahan pangutipan: Tag <ref> dengan nama "unoosa_moon" yang didefinisikan di <references> tidak digunakan pada teks sebelumnya.
Kasalahan pangutipan: Tag <ref> dengan nama "unoosa_q7" yang didefinisikan di <references> tidak digunakan pada teks sebelumnya.
Kasalahan pangutipan: Tag <ref> dengan nama "iisl_2004" yang didefinisikan di <references> tidak digunakan pada teks sebelumnya.
Kasalahan pangutipan: Tag <ref> dengan nama "iisl_2009" yang didefinisikan di <references> tidak digunakan pada teks sebelumnya.
Kasalahan pangutipan: Tag <ref> dengan nama "Marshack" yang didefinisikan di <references> tidak digunakan pada teks sebelumnya.
Kasalahan pangutipan: Tag <ref> dengan nama "barnhart-and-germania" yang didefinisikan di <references> tidak digunakan pada teks sebelumnya.
Kasalahan pangutipan: Tag <ref> dengan nama "spacetoday" yang didefinisikan di <references> tidak digunakan pada teks sebelumnya.

Kasalahan pangutipan: Tag <ref> dengan nama "sciam" yang didefinisikan di <references> tidak digunakan pada teks sebelumnya.

Bibliografi[babak | babak asal mulanya]