Teorema binomial

Tumatan Wikipidia basa Banjar, insiklupidia bibas
Loncat ke navigasi Loncat ke pencarian
Koefisien dari teorema binomial dapat dilihat pada segitiga pascal dan ditentukan menggunakan aturan kombinasi.

Dalam matamatika bidang aljabar elementer, teorema binomial adalah rumus penting nang mambariakan ekspansi atawa pangkat dari penjumlahan antara dua variabel. Versi nang paling sederhana menyambat bahwa:

Gasan setiap bilangan riil atawa kompleks x dan y, serta barataan bilangan bulat taknegatif n. Koefisien binomial nang muncul dalam persamaan (1) kawa didefinisikan dalam bentuk fungsi faktorial n!:

Gasan contoh, gasan 2 ≤ n ≤ 5:

Lihati bahwa:

  1. Pangkat dari bagarak turun dimana pada suku nang pertama dimulai lawan n () wan pada suku terakhir sama dengan 0 ().
  2. Gasan pangkat dari berlaku sebaliknya dimana pada suku pertama sama dengan 0 () wan pada suku terakhir sama dengan n ().

Gasan binomial nang mamakai pengurangan, teorema binomial kawa diterapkan dengan tanda nang balawanan pada suku berikutnya:

Sejarah[babak | babak asal mulanya]

Paristiwa-paristiwa khusus tarkait teorema binomial nang dikatahui sejak zaman kuno diikhtisarkan barikut ngini:

Abad ka-4 SM matematikawan Yunani Euklides manyambat kasus khusus teorema binomial hagan eksponen 2.[1][2] Ada bukti bahwa teorema binomial hagan kubus sudah dikatahui pas abad ka-6 di India.[1][2]

Koefesien binomial, nang kaya jumlah kumbinasi nang manampaiakan banyak cara hagan mamilih k ubjik matan n tanpa panggantian, sudah manjadi parhatian urang-urang Hindu kuno. Referensi paling pamulaan nang dikatahui manganai parmasalahan kumbinasi ngini adalah Chandaḥśāstra karya panulis Hindu, Pingala (sakitar 200 SM), nang mamuat suatu mitude hagan sulusinya.[3]:230 Saikung panaliti bangaran Halayudha matan abad ka-10 M manjalasakan manganai mitudi ngini manggunaakan nang wayahini dipinandui lawan ngaran segitiga Pascal.[3] Haratan abad ka-6 M, matematikawan Hindu mungkin sudah mangatahui cara manunjukkannya dalam sabuting parsamaan ,[4] wan suatu pernyataan nang jelas manganai aturan ngini kawa ditamuakan dalam naskah abad ka-12 Lilavati karya Bhaskara.[4]

Teorema binomial nang sama kawa ditamuakan pada hasil tulisan matematikawan Persia abad ka-11, Al-Karaji, nang manggambarakan pola sagitiga matan koefisien binomial.[5] Inya jua mambarii juga pembuktian matematika matan teorema binomial wan sagitiga lawan mamakai sabuting bantuk sadarhana matan induksi matematika.[5] Penyari wan matematikawan Persia Umar Khayyām mungkin sudah akrab lawan rumus-rumus lawan pangkat nang tatinggi, maskipun banyak karya-karya matematikanya hilang.[2] Ekspansi binomial lawan derajat halus sudah dikatahui ulih matematikawan abad ka-13 bangaran Yang Hui[6] wan Zhu Shijie.[2] Yang Hui mahubungakan mitudi ngitu lawan naskah nang jauh labih pamulaan baasal matan abad ka-11 tulisan Jia Xian, maskipun tulisan-tulisannya wayahini jua hilang.[3]:142

Referensi[babak | babak asal mulanya]

  1. ^ a b Weisstein, Eric W. "Binomial Theorem". Wolfram MathWorld. 
  2. ^ a b c d Coolidge, J. L. (1949). "The Story of the Binomial Theorem". The American Mathematical Monthly. 56 (3): 147–157. doi:10.2307/2305028. 
  3. ^ a b c Jean-Claude Martzloff; S.S. Wilson; J. Gernet; J. Dhombres (1987). A history of Chinese mathematics. Springer. 
  4. ^ a b Biggs, N. L. (1979). "The roots of combinatorics". Historia Math. 6 (2): 109–136. doi:10.1016/0315-0860(79)90074-0. 
  5. ^ a b O'Connor, John J.; Robertson, Edmund F., "Abu Bekr ibn Muhammad ibn al-Husayn Al-Karaji", Arsip Sejarah Matematika MacTutor, Universitas St Andrews .
  6. ^ Landau, James A. (1999-05-08). "Historia Matematica Mailing List Archive: Re: [HM] Pascal's Triangle" (mailing list email). Archives of Historia Matematica. Diakses tanggal 2007-04-13.